Activity 2.2.2 Matrix-vector multiplication.
a. Find the matrix product

$$
\left[\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
2 & 4 & -3 & -2 \\
-1 & -2 & 6 & 1
\end{array}\right]\left[\begin{array}{r}
3 \\
1 \\
-1 \\
1
\end{array}\right]
$$

b. Suppose that A is the matrix

$$
\left[\begin{array}{rrr}
3 & -1 & 0 \\
0 & -2 & 4 \\
2 & 1 & 5 \\
1 & 0 & 3
\end{array}\right]
$$

If $A \mathbf{x}$ is defined, what is the dimension of the vector \mathbf{x} and what is the dimension of $A \mathbf{x}$?
c. A vector whose entries are all zero is denoted by $\mathbf{0}$. If A is a matrix, what is the product $A \boldsymbol{0}$?
d. Suppose that $I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is the identity matrix and $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$. Find the product $I \mathbf{x}$ and explain why I is called the identity matrix.
e. Suppose we write the matrix A in terms of its columns as

$$
A=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right] .
$$

If the vector $\mathbf{e}_{1}=\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right]$, what is the product $A \mathbf{e}_{1}$?
f. Suppose that

$$
A=\left[\begin{array}{rr}
1 & 2 \\
-1 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

Is there a vector \mathbf{x} such that $A \mathbf{x}=\mathbf{b}$?

