Activity 2.3.3 In this activity, we will look at the span of sets of vectors in \mathbb{R}^{3}.
a. Suppose $\mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$. Give a geometric description of $\operatorname{Span}\{\mathbf{v}\}$ and a rough sketch of \mathbf{v} and its span in Figure 2.3.10.

Figure 2.3.10 A three-dimensional coordinate system for sketching \mathbf{v} and its span.
b. Now consider the two vectors

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Sketch the vectors below. Then give a geometric description of $\operatorname{Span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ and a rough sketch of the span in Figure 2.3.11.

Figure 2.3.11 A coordinate system for sketching $\mathbf{e}_{1}, \mathbf{e}_{2}$, and $\operatorname{Span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$.
c. Let's now look at this situation algebraically by writing write $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$. Determine the conditions on b_{1}, b_{2}, and b_{3} so that \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ by considering the linear system

$$
\left[\begin{array}{ll}
\mathbf{e}_{1} & \mathbf{e}_{2}
\end{array}\right] \mathbf{x}=\mathbf{b}
$$

or

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Explain how this relates to your sketch of $\operatorname{Span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$.
d. Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right] .
$$

1. Is the vector $\mathbf{b}=\left[\begin{array}{r}1 \\ -2 \\ 4\end{array}\right]$ in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$?
2. Is the vector $\mathbf{b}=\left[\begin{array}{r}-2 \\ 0 \\ 3\end{array}\right]$ in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$?
3. Give a geometric description of $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
e. Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}
1 \\
-2 \\
4
\end{array}\right] .
$$

Form the matrix $\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]$ and find its reduced row echelon form.

What does this tell you about $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
f. If the span of a set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is \mathbb{R}^{3}, what can you say about the pivot positions of the matrix $\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{n}\end{array}\right]$?
g. What is the smallest number of vectors such that $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}=\mathbb{R}^{3}$?

