Linearity

Linear Algebra

College of the Atlantic

1. Convince yourself that $R: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ is linear, where R reflects vectors about the x axis.
2. Show that the derivative operator $\frac{d}{d x}$ is linear.
3. Let's now consider \mathbb{P}_{3}, the set of all cubic polynomials. These are functions that have the following form.

$$
\begin{equation*}
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} . \tag{1}
\end{equation*}
$$

(using a two-observer spacetime diagram). Specifying a particular such function requires specifying the values of four numbers ($a_{0}, a_{1}, a_{2}, a_{3}$), which we can write as vector \vec{y} :

$$
\vec{y}=\left[\begin{array}{l}
a_{0} \tag{2}\\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

We'll now consider the derivative operator restricted to cubic polynomials: $\frac{d}{d x}: \mathbb{P}_{3} \mapsto \mathbb{P}_{3}$. Write $\frac{d}{d x}$ as a matrix transformation.

