Theory and Applications of Complex Networks

Class Two
College of the Atlantic
David P. Feldman
12 September 2008
http://hornacek.coa.edu/dave/

1. Representing networks
2. Variations on networks
3. Basic structural properties of networks

What is a Network?

1. A collection of nodes
2. A collection of edges connecting nodes

- Let $N=$ number of nodes.
- Let $M=$ number of links or edges.
- Networks are also knows as graphs, particularly among mathematicians.

Network Representation: Adjacency Matrix

- Adjacency matrix A : $A_{i j}=1$ if there is a link between nodes i and j.

Otherwise $A_{i j}=0$.

- For the graph shown above:

$$
A=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \tag{1}\\
1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

- Note that A is symmetric

Adjacency Matrix vs. Lists

- For the networks we will consider the adjacency matrix is usually sparse. I.e., it has lots of zeros.
- This means that it is an inefficient representation because we waste memory keeping track of a vast number of zeros.
- An alternative is to simply list the links by referring to the nodes they connect
- Ex: $(1,2),(1,5),(2,3),(2,4),(2,5),(3,4),(4,5),(5,6)$.

Variation: Directed Network

- Links have direction. Adjacency matrix is no longer symmetric.

$$
A=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0 \tag{2}\\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Variation: Weighted Network

- Links have weights, indicating differint strengths of connection. Adjacency matrix is no longer all 1's and 0's

$$
A=\left(\begin{array}{llllll}
0 & 6 & 0 & 0 & 3 & 0 \tag{3}\\
6 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 & 0 & 0 \\
0 & 1 & 3 & 0 & 2 & 0 \\
1 & 3 & 0 & 2 & 0 & 4 \\
0 & 0 & 0 & 0 & 4 & 0
\end{array}\right)
$$

Variation: Heterogenous Networks

- These are networks where there are different kinds of nodes and/or different kinds of links.
- One common example is a graph in which there are two types of nodes, where nodes can only be connected to nodes of the other type.
- These types of networks are known as bipartite graphs.
- Example: A network of senators and corporations, where corporations are connected to senators via donations.

Basic Network Properties

- Given a network, what are some useful ways of describing its connectivity, organization, structure, etc?
- Today, some basic and (mostly) quite standard definitions.
- I will focus on regular networks, but most of the quantities generalize fairly naturally to directed and/or weighted networks.
- You should be aware that there is not yet a common set of notation for most of these quantities. Different authors and different communities use different conventions.

Basic Network Properties: Degree

- The degree k of a node is the number of links connected to it.
- The degree is sometimes called coordination number and denoted with z. This is mostly a physics convention.
- Ex: $k_{1}=2, k_{2}=4, k_{6}=1$.
- Often we are interested in the average degree of all the nodes.
- This is often denoted k or $\langle k\rangle$. The latter is called "the expectation value of k."
- For this graph, $k=2.67$.
- There is a hard and an easy way to calculate k.

Basic Network Properties: Degree Distribution

- We are usually interested in more than just the average degree.
- Are some nodes more connected than others? How much variance is there about the mean degree?
- For that matter, is the notion of an average degree or variance even meaningful?
- These questions can be addressed by looking at the degree distribution.
- $P(k)$ is the probability that a randomly chosen node has degree k.

Basic Network Properties: Degree Distribution

- There is one node with degree 1 , two nodes with degree 2 , one node with degree 3 , and two nodes with degree 4 .
- This can be represented in the following histogram:

- Later in the course we will examine in considerable detail different function forms for $P(k)$ and what they tell us.

Basic Network Properties: Distance and Diameter

- Distance $d_{i j}$ between nodes i and j
- $d_{i j}=\#$ of links along shortest path connecting i and j.
- This is also denoted $d(i, j)$ or $\delta(i, j)$.
- This is sometimes referred to as the geodesic distance.
- The shortest path is called a geodesic.
- The mean distance ℓ is the average of the $d_{i j}$'s.
- Apparently there is not an entirely standard way to do this average; sometimes the self-distances $\left(d_{i i}=0\right)$ are included and sometimes they are not.
- For large networks it doesn't matter too much.

Basic Network Properties: Distance and Diameter

- ℓ may be thought of as a measure of the size of the network.
- The diameter d of a graph is defined to be the distance of the longest geodesic.
- $d=\max _{i j} d_{i j}$.
- The diameter is another measure of the size of the network.
- A network is said to have the "small world" property if ℓ grows no faster than the \log of the number of nodes: $\ell \sim \log (N)$.
- More on small-world graphs later in the course.

Network Properties: Clustering and Transitivity

- To what extent are your friends friends with each other?
- There are two clustering measures that quantify the tendence of friends to be friends.

- There are two common ways to measure clustering.
- The following discussion closely follows Newman, "Structure and Function of Complex Networks," 2003.

Clustering and Transitivity: Method Two

- Consider a node i of degree k.
- Let e_{i} denote the number of edges among i 's k neighbors.
- Max \# of links that could exist among these k neighbors $=\frac{1}{2} k(k-1)$.
- Think about this until it makes sense.
- The the cluster coefficient $C_{i}^{(2)}$ for site i is:

$$
\begin{equation*}
C_{i}^{(2)}=\frac{e_{i}}{\frac{1}{2} k(k-1)}=\frac{2 e_{i}}{k(k-1)} . \tag{4}
\end{equation*}
$$

- $C_{i}^{(2)}=$ friends among i 's friends as a fraction of the total possible number of friends among i 's friends.
- The average clustering coefficient is denoted $C^{(2)}$ and is defined in the natural way.

Clustering and Transitivity: Method Two: Example

$$
\begin{equation*}
C_{i}^{(2)}=\frac{e_{i}}{\frac{1}{2} k(k-1)}=\frac{2 e_{i}}{k(k-1)} . \tag{5}
\end{equation*}
$$

- For node $i, k=4$.
- $e_{i}=\#$ of edges among i 's neighbors $=1$. neighbors.
- Plugging in, we get

$$
\begin{equation*}
C_{i}(2)=\frac{2 \times 1}{4 \times 3}=\frac{1}{6} \tag{6}
\end{equation*}
$$

- btw, the (2) upstairs on the C 's references the fact that this is the second way of defining C.

This notation isn't standard. Usually a paper only uses one of the two definitions for C and you should be careful to make sure which one it's using.

Clustering and Transitivity: Method Two Alternative

- Here is another formula for $C_{i}^{(2)}$:

$$
\begin{equation*}
C_{i}^{(2)}=\frac{\# \text { of triangles connected to vertex } i}{\# \text { of triples centered on } i} \tag{7}
\end{equation*}
$$

- For this example, we get $C_{i}^{(2)}=\frac{1}{6}$ just like before.
- It might take a few moments of quiet contemplation to convince yourself that these two formulae are equivalent.

Clustering and Transitivity: Method One

- Here is an different definition for the cluster coefficient.

$$
\begin{equation*}
C_{(1)}=\frac{3 \times \# \text { of triangles }}{\# \text { of connected triples }} . \tag{8}
\end{equation*}
$$

- For this example, we get $C^{(1)}=\frac{3 \times 1}{8}$.
- Note that this is a property of the entire network, not a single node.
- $C^{(1)}=$ fraction of transitive triples.
- I believe that this definition is more common in sociology. The previous definition is more common in physics.

Network Properties: Which Nodes are the Most Important?

- Which nodes are the most important in a network?
- What different roles might nodes play?
- How are these different roles distributed among the nodes?
- Measures of importance of a node are often called centrality.
- There are several different notions of centrality. Some of the following definitions are more standard than others.
- The following several slides follows Mason and Verwoerd, section four.

Network Properties: Degree Centrality

- Key Idea: An important node is involved in many interactions.
- The degree centrality of a node is simply its degree.
- Thus, under this line of reasoning, the most important node is the one with the most connections.

Network Properties: Closeness Centrality

- Key Idea: An important node is close to lots of other nodes.
- The excentricity of node j :

$$
\begin{equation*}
C_{e}(j)=\max _{i} d_{i j} \tag{9}
\end{equation*}
$$

- I.e., $C_{e}(j)$ is the distance from j to the node that is furthest away from j.
- Another interesting notion is the center of the graph. This is given by the set of points that are closest to everybody else:

$$
\begin{equation*}
\mathcal{C}=\left\{i: C_{e}(i)=\min _{j} C_{e}(j)\right\} \tag{10}
\end{equation*}
$$

- The above equation just says that the center is the middle of the graph.

Network Properties: Betweenness Centrality

- Key Idea: An important node connects lots of other nodes. I.e., an important node will be on a high proportion of paths between other nodes.
- To calculate $C_{b}(i)$, the betweenness centrality for node i :

1. Consider all pairs of nodes $j, k \neq i$.
2. Determine the shortest path between all such j, k.
3. Then $C_{b}(i)=$ fraction of those paths which go through i.

Network Properties: Eigenvalue Centrality

- Key Idea: An important nodes are connected to many other important nodes
- Details later in the course.

A Few References

- Mark E.J. Newman, The Structure and function of complex networks. SIAM Review, 45(2), 167-256. 2003.
- O. Masin and M. Verwoerd, Graph Theory and Netowrks in Biology. 2006.
- Skye Bender-deMoll, Potential Human Rights Uses of Network Analysis and Mapping: A report to the Science and Human Rights Program of the AAAS, 2008.
- Duncan J. Watts, The "New" Science of Networks, Annual Review of Sociology 30:243-270, 2004.
- C. Gros, Complex and Adaptive Dynamical Systems: A primer, forthcoming Springer 2008. Chapter 1 is on networks.
- All except are available online.

