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1. A very brief history of networks research

2. Introduction to random graphs

3. Properties of random graphs
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The Beginning of Graph Theory

• Leonhard Euler wonders, can I walk through the city of Königsberg and cross

each bridge once and only once?

• Figure Source:

http://en.wikipedia.org/wiki/Image:Konigsberg bridges.png.

• In 1736, Euler answers this question with a theorem.
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Eulerian paths

• Figure sources: http://en.wikipedia.org/wiki/Image:7 bridges.svg

and http://en.wikipedia.org/wiki/Image:Konigsburg graph.svg.

• Euler recognized this as a graph problem, as shown above.

• He then proved the following general theorem: An Eulerian path exists on a

graph if and only if there are exactly zero or two nodes with odd degree.

• An Eulerian path is a path that uses each edge in the graph exactly once.
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Graph Theory

• Euler’s 1736 theorem is the first result in the field of graph theory.

• Subsequently, there was a fair amount of work done in this area.

• This sort of work is generally considered to belong to the branch of math

known as combinatorics.

• This work was mostly confined to pure mathematics and, much later,

theoretical computer science.

• In this line of work, graphs were generally viewed as fixed, static quantities.

They were not viewed as random variables, nor were the statistics of graphs

studied.

• Wikipedia seems to have some good, thorough pages on graph theory and its

history.
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Random Graphs

• Rapoport (1957) and Erdős and Rényi (1959) introduce random graph

models.

• These are, in a sense, maximally random—like flipping coins.

• Erdős and Rényi rigorously prove a number of properties of random graphs.

• These results are probabilistic in nature.

• The basic form of this model is now known as the Erdős and Rényi model.

• Much more about the E-R model later today.

• In general, math for very ordered thing and totally disordered things is “easy.”
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Highly Schematic Picture of Order and Disorder

DISORDERORDER

Abstract Algebra

Crystal Structures

Exact Symmetries

Group Theory

Regular Graphs, Lattices Erdos−Renyi Model, Random Graphs

Chaos, Mixing, etc.

Unpredictability

Tossing Coins (IID Processes)

Ideal Gases

• There are well understood mathematical techniques for studying the extremes

of order and disorder.

• Intermediate regions are harder. Often one starts at one extreme and then

perturbs or expands off that extreme to get approximate solutions.
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Networks and Graphs after Erd ős and R ényi

• A fair amount of work in sociology, social networks, economics, etc.

• Also work on computer and technological networks, engineering, etc.

• Then, in 1998, Duncan Watts and Steven Strogatz publish Collective

Dynamics of ’Small-world” networks, Nature 393:440–442.

• This paper sparks a remarkable surge of interest in networks.

• Watts and Strogatz’s paper has been cited over 6000 times.

• In 1999, Barabasi and Albert (re)-discover power laws in networks.

• Their paper, Emergence of Scaling in Random Networks, Science 286:509

has now been cited over 3000 times.
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Why this Sudden Surge in Networks Research?

In my opinion, this is due to a number of factors.

• Electronic data became available that wasn’t available before.

• Advances in computing power.

• The idea of networks resonates with increased attention to connection, links,

globalization, etc.

• Watts and Strogatz’s model was very elegant and simple mathematically, and

captured the imagination of a great many people.

• Once physicists became aware of networks, it was quickly realized that they

were very well suited to a physics style of analysis.

• Arguably, there wasn’t that much interesting and exciting going on in other

areas of physics.

• Complex networks are a natural extension of chaos and complex systems,

areas that had attracted considerable attention in the 1980’s and 90’s.
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The Erd ős Rényi Model

• The Model:

1. Start with N nodes.

2. Connect each pair of nodes with probability p.

• Questions:

– Is the graph connected?

– What is the degree distribution?

– What is the size of the graph?

– What is the clustering coefficient?

• Why might we care?

– In science, we frequently need to ask, Could this have happened

randomly, by chance?

– In order to answer this question, we need to know about random graphs.
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ER Analysis: Preliminaries

Suppose a coin comes up heads with probability p.

• P(HHHHH) = p5.

• P(HHHTT ) = p3(1 − p)2.

• P(HTHHT ) = p3(1 − p)2.

Probability P(3) that we get three heads out of five tosses:

P = (# of ways to get 3 heads) × p3(1 − p)2 . (1)

After some careful counting, we see that:

P = (10) × p3(1 − p)2 . (2)

What’s the general formula?
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ER Analysis: Preliminaries

• How many ways can we choose k objects out of a total of N?

(

N

k

)

=
N !

k!(N − k)!
. (3)

• So, if we toss a coin N times, the probability P(k) that we get k heads is:

P(k) =

(

N

k

)

pN (1 − p)N−k , (4)

where p is the probability of heads.

• This is an extremely versatile result.

• Try typing “5 choose 2” into a google search.
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ER Analysis: Degree Distribution

• How many links does a node have? Each node gets N − 1 potential links,

and each chance yields a link with probability p.

• Thus, the degree distribution P(k) is:

P(k) =

(

N − 1

k

)

pN−1(1 − p)N−1−k . (5)

• For large N , this equation becomes well approximated by:

P(k) ≈

zke−z

k!
, (6)

• Where z = p(n − 1) is the mean degree.

• This is known as the Poisson distribution. It arises in many different

applications, not just networks. More about its origins in a few week.
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Poisson Distribution Properties

• Plot of Poisson Distribution P(x) = λ
k
e
−λ

k!
for three different λ values.

• Figure Source: http://en.wikipedia.org/wiki/Image:

Poisson distribution PMF.png.

• Variance = Mean = λ.

• The distribution is discrete. It is only defined for integer k.
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ER Analysis: Degree Distribution Conclusion

• For an Erd ős-Rényi Random Graph, the degree distribution is Poisson.

• The distribution P (k) decays extremely rapidly as k gets large—much faster

than exponential!

• This means that well connected nodes are astronomically unlikely.

• Example: If N = 100 and p = 0.1, then λ = 10 and

P (50) = 0.000000012.

• We will see that the degree distribution of empirical networks are very rarely

Poisson.

c© David P. Feldman College of the Atlantic Fall 2008

Theory and Applications of Complex Networks 15

ER Analysis: Clustering Coefficient

• The cluster coefficient is the fraction of your friends that are friends.

• Link probabilities in the ER model are independent.

• Thus, the probability that your friends are friends is just p.

• Hence, C = p.

• Conclusion: Erdős-Rényi graphs have small clustering coefficients.

• Almost all real-world graphs have clustering coefficients larger than would be

expected for comparable ER graphs.
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ER Analysis: Characteristic Path Length

• Let z = np be the average degree.

• The number of nodes a distance d from any node is approximately xd.

• How big must d be so that it includes all of the nodes in the graph? This value

of d is ℓ, the characteristic path length:

zℓ = n −→ ℓ =
log n

log z
=

log n

log p + log n
. (7)

• Thus, ER graphs are “small-world,” since ℓ grows logarithmically with n.

• Many real-world graphs have the small-world property.
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ER Analysis: Is the Graph Connected?

• Roughly speaking, the graph undergoes a phrase transition as p is increased

from being a collection of small connected fragments to a graph which has a

giant connected component.

• A giant connected component is a connected component that is proportional

to n in the large n limit.

• The critical parameter at which this occurs is, not surprisingly, z = 1.
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ER Analysis: Connectivity Phase Transition

• Figure Source: M.E.J. Newman, The Structure and Function of Complex

Networks, SIAM Reviews, 45(2):167–256, 2003.

c© David P. Feldman College of the Atlantic Fall 2008

Theory and Applications of Complex Networks 19

Summary of Properties of Erd ős-Rényi Model

• Degree distribution is Poisson

• Very low clustering

• Highly connected, “Small-world”

• Connectivity properties change discontinuously
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Erdős-Rényi Model Conclusions

• Simple, tractable model of random graphs

• Not a realistic model, but a useful “straw man” or null model

• Does capture the small-world feature common in real-world networks

• Also has discontinuous changes, suggesting that other, more realistic models,

might also have sharp thresholds

• Gives us intuition about what to expect from more complicated and realistic

models
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