Theory and Applications of Complex Networks
Classes Six–Eight
College of the Atlantic
David P. Feldman
30 September 2008 http://hornacek.coa.edu/dave/
A brief interdisciplinary primer on probability distributions and stochastic processes and then a bunch of stuff about power laws, what they are, what they mean, and what they don't mean

Why Probabilities?

Probabilities are used for somewhat different ends:

Compression:

- To compress a large series of data for a more compact representation.
- E.g., rather than listing the height of every COA student, just assume (or show) that the heights are Gaussian, and give the mean and standard deviation of the heights.
- Tradeoff: a more complicated distribution might fit the data better, but description would be larger, achieving less compression.

Why Probabilities?

Prediction:

- Given a set of observations, we wish to form a probabilistic description that predicts or describes future observations.
- E.g., the distribution of heights of current students could be used to predict the heights of next year's entering class.
- Tradeoff: a more complicated distribution might fit the data better, but it would *generalize* less well.
- In other words, there is a risk of *over-fitting* or fitting to noise.
- Predicting well may not be the same thing as "getting the model right."
- Prediction is, arguably, a form of understanding. But prediction does not necessarily tell us about mechanism or causality.

Why Probabilities?

Causality:

- Given a set of observations, we wish to form a probabilistic description that sheds light on the causes or mechanisms that produced the data.
- Here we are interested in the "right" or best model.
- Establishing this usually necessitates comparing different models, not just finding a good fit to one model.
- Challenge: this is often a difficult inferential task.
- Challenge: there may be very different mechanisms that produce a given probability distribution.

Where do Probabilities come from?

- "Nature does not give us probabilities or probability distributions, it gives us measurements." (Chris Wiggins)
- Going from measurements to probability distributions is an essential part of statistics and statistical inference.

The Binomial Distribution

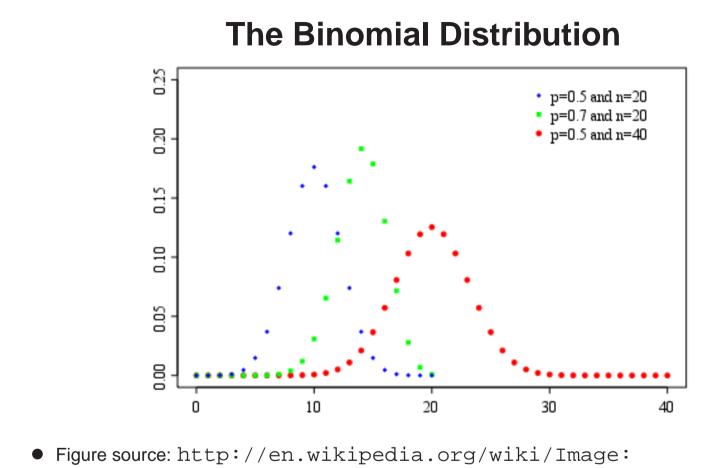
- Supposed we have a binary variable. Successive outcomes are uncorrelated and are A with probability p and B with probability q = (1 p).
- Such a set of random variables are referred to as IID: Identically and independently distributed.
- The probability that we observe n A's in N trials is:

$$P(n) = \binom{N}{n} p^n q^{n-k} .$$
⁽¹⁾

- This is known as the *binomial distribution*.
- The binomial coefficients are:

$$\binom{N}{k} = \frac{N!}{k!(N-k)!} .$$
⁽²⁾

• This isn't a bad thing to memorize/internalize.



- Binomial_distribution_pmf.svg.
- The mean is np and the variance is np(1-p).
- Standard deviation = $\sqrt{\text{variance.}}$ (True for all distributions, not just binomial.)

Poisson Distribution

• If Np stays fixed as N gets large, the Binomial distribution converges to the Poisson distribution.

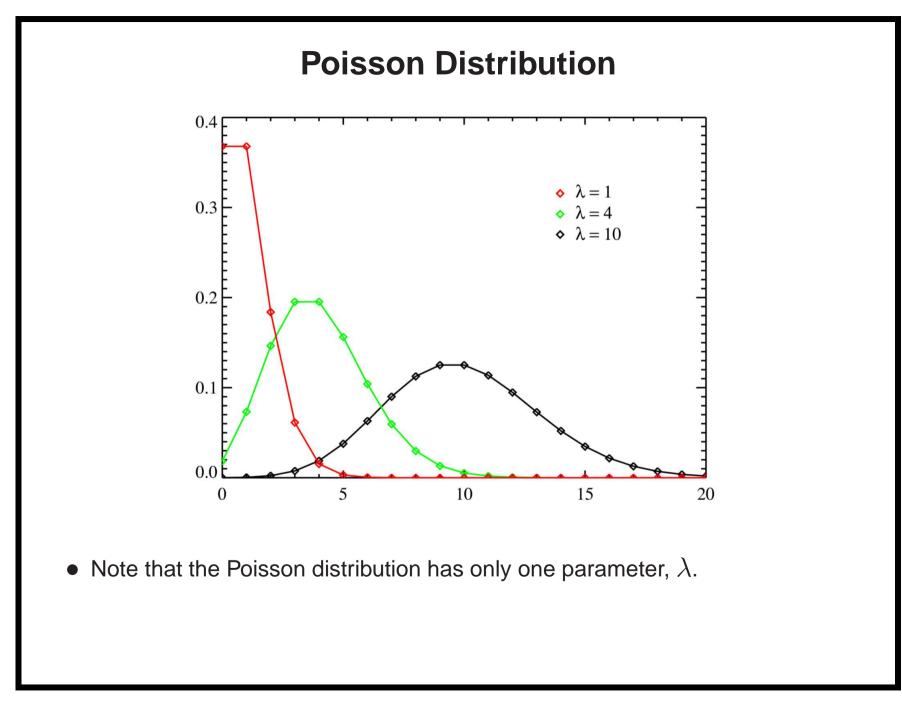
$$P(n) = \frac{\lambda^n e^{-\lambda}}{n!} .$$
(3)

where $\lambda = Np$ is the mean.

- For the Poisson distribution, the mean and variance are equal.
- Suppose there is a random event that occurs with fixed probability *r* per unit time.
- Then in a fixed amount of time, the number occurrence in a fixed time T is Poisson distributed with mean rT.

Poisson Distribution

- A vast number of phenomena are well approximated by Poisson distributions: distribution of roadkill on a highway, mutations in a strand of DNA, typos per page, calls per hour to a call center, number of raindrops falling over a spatial area, number of customers arriving to a store each hour.
- Poisson distributions are generated by a *Poisson process*: a stochastic process where events occur continuously and independently of each other.
- If the rate of occurrence is constant, then we get the Poisson distribution.
- In general, Poisson distributions are common in "counting" situations.
- Note that the Poisson distribution is for a discrete number of events. Those events may, or may not, occur continuously in time.

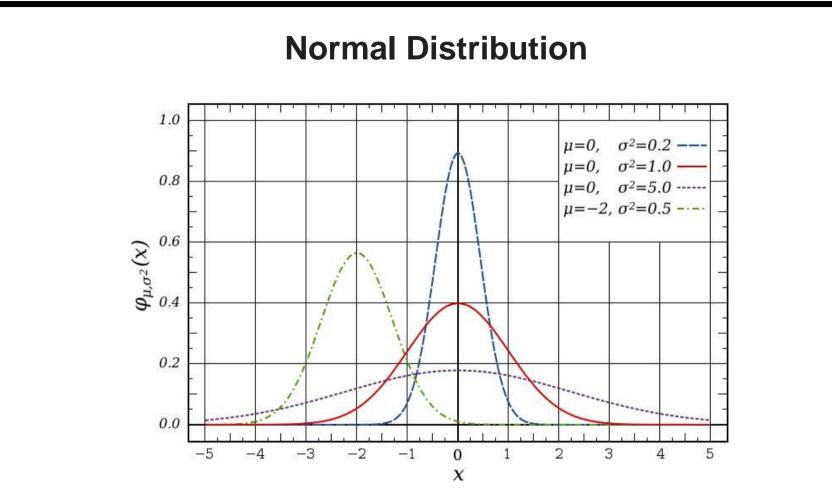


Normal Distributions

• For large n, the Binomial distribution converges to a Gaussian distribution:

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma}}.$$
 (4)

- This is a *continuous* distribution. Hence, P(x) must be interpreted as a *probability density*. This is a different mathematical concept than a discrete probability!
- The mean of the distribution in μ .
- The variance is σ^2 .
- The distribution has "thin tails." The probability that x deviates from its average by more than 2σ , 3σ , 4σ , 5σ is, respectively: 0.042, 0.003, 6×10^{-5} , and 6×10^{-7} .



- A vast number of phenomena are distributed according to the normal distribution, even those which don't originate from a binomial distribution.
- Why?

College of the Atlantic Fall 2008

Central Limit Theorem!

- A sum of random variables with finite mean and variance is Gaussian distributed, *regardless of the distribution of the random variables themselves!*
- Let $X_1, X_2, \ldots X_n$ be a set of N independent random variables.
- Let each X_i have mean 0 and a finite variance σ_i^2 .
- Define a a new random variable to the the sum of N random variables:

$$X = \frac{1}{N} \sum_{i=1}^{N} X_i .$$
 (5)

• Define the "mean of the means"

$$\mu = \frac{1}{N} \sum_{i=1}^{N} \mu_i .$$
 (6)

College of the Atlantic Fall 2008

Central Limit Theorem

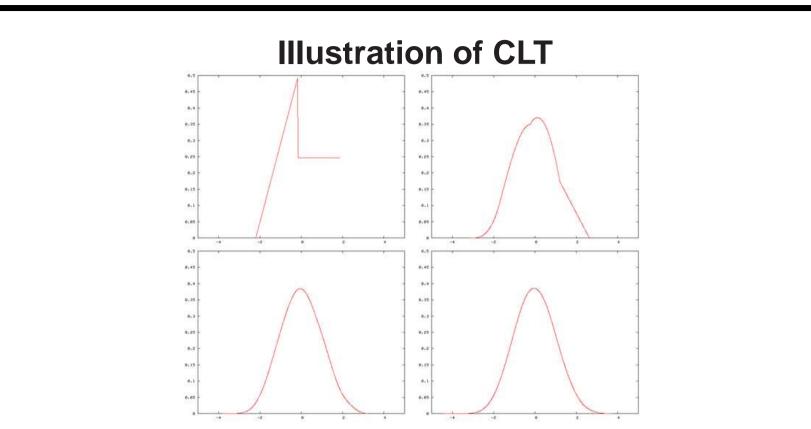
• And the mean squared error:

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{2} .$$
 (7)

• Then, in the limit of large N, X is normally distributed:

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma}}$$
 (8)

- There is some additional small mathematical print: the sum of the central third moments of the X_i 's must be finite, and the cube root of this sum, divided by the square root of the mean squared error, must tend to zero. This is the Lyapunov condition.
- The basic result is that a sum of random variables has a Gaussian distribution, provided that the variance of the random variables is finite.



- The first plot is the distribution of a variable X which is clearly not Gaussian.
- The second, third, and fourth plots are the distribution of X + X, X + X + X, and X + X + X + X.
- Note that the distribution of the sum is approaching a Gaussian.
- http://en.wikipedia.org/wiki/Image:Central_limit_thm.png

Gaussian Conclusions

- The Gaussian distribution is unarguably fundamental, and the central limit theorem is profound.
- The CLT is the foundation of much of statistics and inference.
- However, not everything is distributed according to a Gaussian.
- In particular, a variable may fail to be Gaussian if it is the result of a bunch of influences which
 - are multiplicative
 - have infinite variance
 - aren't independent

Discrete Exponential Distribution

- Suppose you are tossing a coin that comes up heads with probability p. Let x = how many tosses before you see a heads.
- The random variable x is distributed according to: $P(x) = (1 p)^{x-1}p$.
- This is an example of a discrete exponential distribution:

$$P(x) = Ae^{-kx} . (9)$$

- Exponential distributions arrive in waiting problems of this sort.
- Note that this is a discrete distribution, but that x is unbounded.

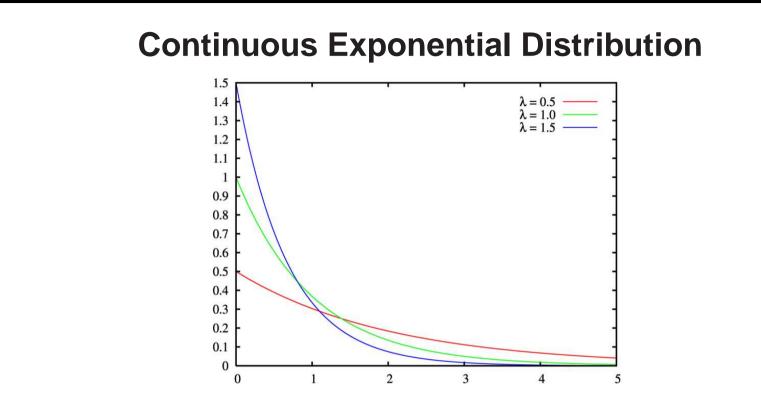
Continuous Exponential Distribution

- Consider a Poisson processes in which events occur independently at a constant rate.
- The number of events in a fixed time is a discrete variable and is Poisson distributed.
- The waiting time T between events is a continuous variable and is exponentially distributed:

$$P(T) = Ae^{-kT} , (10)$$

where T > 0.

• The mean of this distribution is 1/k; the variance is $1/k^2$.



- Many phenomena are distributed exponentially: survival time of many diseases, time between phone calls, distance between mutations on DNA, distance between roadkill on a road, atmospheric density as a function of height.
- Observing an exponential distribution is a clue that the events are independent, or memoryless.

(Central Limit Theorem and Statistics)

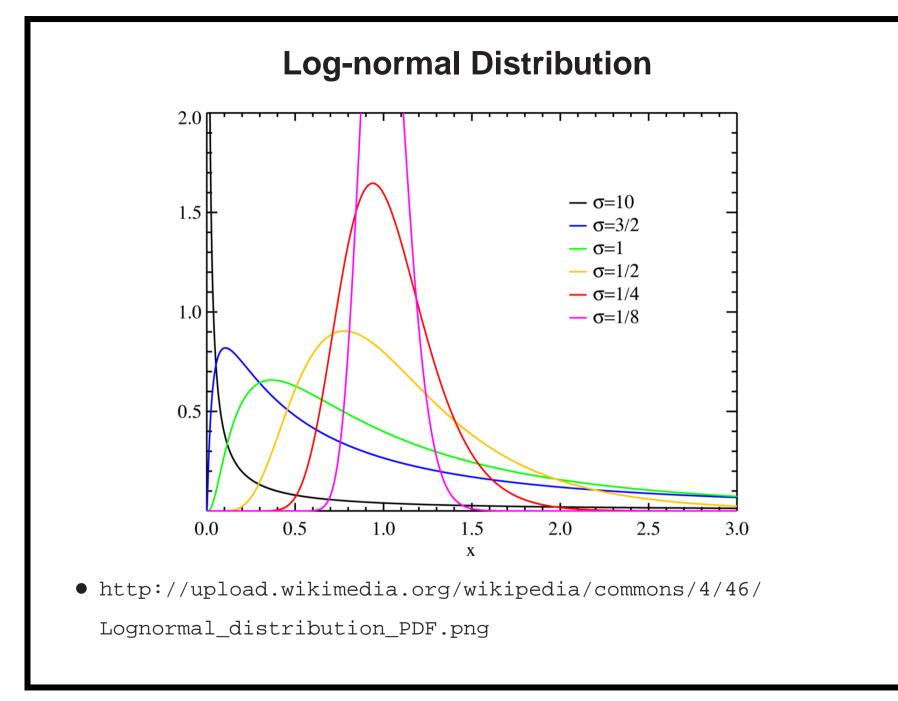
- Suppose you have two groups of cancer patients. You give an experimental treatment to one group but not the other.
- You wish to know if the average survival time is different between the two groups.
- So, you calculate the average survival time for each group and then compare them.
- Is the difference significant? In order to answer this question, you need to know how your average estimates are distributed.
- The central limit theorem says that they'll be normally distributed (in the large N limit).
- You can then use this fact to determine statistical significance.

Log-normal distributions

- Gaussian distributions occur when we add up a bunch of random variable.
- If the random variables are somehow multiplied together, then we very often get a log-normal distribution:

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} e^{-\frac{(\ln(x)-\mu)^2}{2\sigma^2}}.$$
 (11)

- In other words, $\ln(x)$ is normally distributed.
- The mean is $e^{\mu + \sigma^2/2}$ and the variance is $(e^{\sigma^2} 1)e^{2\mu + \sigma^2}$.
- The log-normal distribution arises from a product of independent, identically distributed random variables.
- The log-normal distribution is skewed and has a heavy tail.



Log-normal Distribution

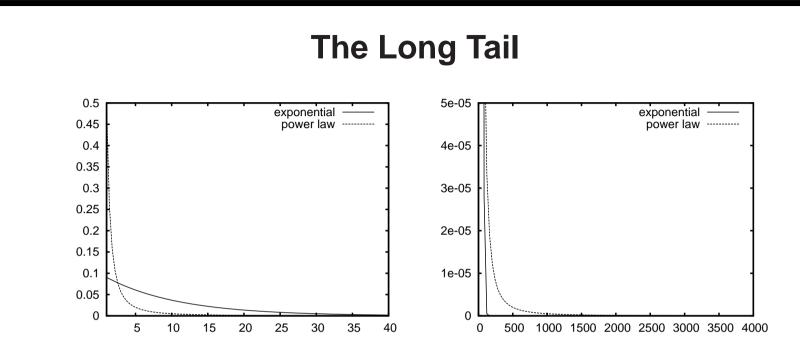
- Log-normals arise as the result of random multiplicative processes.
- Very many phenomena are well described by log-normals:
 - Rates of returns of stocks
 - Number of entries in people's email address books
 - Sizes of oil drops in mayonnaise
 - Latency periods of many diseases
 - The abundance of many species
 - Concentration of elements within a rock
 - Number of letters per sentence
 - Permeability of plant leaves
 - Size distribution of aerosols
- It is possible to mistake a log-normals for a power laws, and vice versa.

Power Laws

• A power law for a variable x is a distribution of the following form:

$$f(x) = Ax^{-\alpha} . \tag{12}$$

- The variable *x* could be discrete or continuous.
- Power-laws often arise in frequency plots, where x is the *rank* of a variable and f(x) is the frequency.
- For example, f(4) might be the size of the 4th largest city.
- Power-law distributions are long-tailed.
- If $\alpha \leq 2$, the variance is infinite.
- If $\alpha \leq 1$, the mean is infinite.



• $\alpha = 2$, mean of exponential = 0.1.

- The power law distribution has infinite variance.
- More about power laws in a bit.

Probability Distributions

- Two views of these distributions: something to fit to empirically and the limiting distribution of a stochastic process
- The distributions reviewed above are just the beginning. There are many other useful probability distributions.
- However, the ones I've presented are, in my experience, the ones you are most likely to encounter.
- (However, I probably should have mentioned the Weibull, or stretched exponential distribution, as this is also pretty important.)
- Also, there is no reason why the real world has to adhere to simple stochastic processes and distribution.

Power Laws: What's all the fuss about?

Why are power laws seen as very interesting objects of study. Why?

- They are long-tailed, and thus qualitatively different than Gaussians or exponentials or Poisson distributions. The probability of extreme events is much higher under a power law distribution.
- They are a particularly simple distribution, and so it is noteworthy when a complicated system is well approximated by a power law distribution.
- Power law distributions are scale free, or fractal.
- There are some interesting mechanisms that produce power laws.

Warning: Finding Power laws in Data.

- Finding power laws in empirical data can be tricky, and it is often done wrong.
- Estimating a slope from a log-log plot is *not* the best way to estimate the exponent.
- Instead, use a maximum likelihood estimator.
- Everything looks straighter on a log-log plot.
- Also, it is essential to also try fitting to other candidate distributions, e.g., the log-normal.
- Just because a power-law has a high R^2 , meaning it describes a lot of the variance, doesn't mean that the distribution really is a power-law, since other distributions might give higher R^2 's.

Empirical Power-law Warnings, continued

• See the excellent paper: Clauset, Shalizi, Newman: Power-law distributions in empirical data, http://arxiv.org/abs/0706.1062,2007.

• See also Shalizi,

http://cscs.umich.edu/~crshalizi/weblog/491.html and http://cscs.umich.edu/~crshalizi/weblog/232.html.

- The blog entries and the paper make excellent reading.
- Their comments about statistics and inference apply to much more than just power laws.

Why are Power Laws Scale-Free?

- The following closely follows Newman (2005).
- A power law distribution is the same, no matter what scale we look at it.
- E.g., we might find that blogs with 200 hits are day are 1/6 as common as blogs with 100 hits a day, and that blogs with 20,000 hits a day are 1/6 as common as blogs with 10,000 hits a day.
- A distribution p(x) is scale free if, for all b and x:

$$p(bx) = g(b)p(x) . \tag{13}$$

- One can show that the *only* p(x) that satisfies this is a power law: $p(x) = cx^{-\alpha}$.
- Thus, power law \iff scale free.

Generative Mechanisms for Power Laws

- Often one wants to use an observed distribution to infer something about the mechanism that generated that distribution.
- It turns out that there are many interesting ways that power laws can be generated.
- The following papers are excellent reviews:
 - M.E.J. Newman, Power laws, Pareto distributions and Zipf's law, Contemporary Physics 46, 323-351 (2005). arXiv.org/cond-mat/0412004
 - D. Sornette, Probability Distributions in Complex Systems, arxiv.org/abs/0707.2194.
 - M. Mitzenmacher, A Brief History of Generative Models for Power Law and Lognormal Distributions, Internet Mathematics, vol 1, No. 2, pp. 226-251, 2004.
 - Reed and Hughes, From gene families and genera to incomes and internet file sizes: Why
 power laws are so common in nature. Physical Review E 66:067103. 2002.

Mechanism 1: Exponentially Observing Exponentials

- Suppose a quantity is growing exponentially: $X(t) = e^{\mu t}$.
- Suppose we measure the quantity at a random time T , obtaining the value $\bar{X}=e^{\mu T}$.
- Let T also be exponentially distributed: $P(T > t) = e^{-\nu T}$.
- Then the probability density for \bar{X} is given by $f_{\bar{X}}(x) = k x^{-\mu/\nu 1}$.
- Like magic, a power law has appeared.
- In general, there are lots of ways to make power laws by combining exponential distributions in different ways.
- See Reed and Hughes, 2002.

Mechanism 2: The Yule Process

- First proposed by Yule in 1922 as an explanation for the distribution of the number of species in a genus.
- Subsequently rediscovered and extended.
- Goes by many names: cumulative advantage, the Matthew Effect, the Gibrat principle, rich-get-richer, and preferential attachment.
- Basic idea. An entity gets more (links, money, species) in proportion to the the number that it currently has.

The Yule Process, continued

- General formulation of the Yule process:
 - System consists of a collection of object with some property (e.g., population, number of links, etc.) measured by k
 - A new object appears with an initial value k_0 .
 - There are m new connections/species/people added after each new object appears.
 - The quantity measured by k increases stochastically, in proportion to $c + k_0$.
- This model has three parameters: m, c, and k_0 .
- The distribution of k can be solved for exactly. In the large k limit, it has a power law tail with an exponent of:

$$\alpha = 2 + \frac{k_0 + c}{m} . \tag{14}$$

College of the Atlantic Fall 2008

Non-linear Preferential Attachment

- What happens if the probability of a new connection is proportional to k^{γ} instead of being exactly proportional to k.
- Krapivsky, Redner, and Leyvraz (PRL 85(21):4629, 2000) show that:
 - if $\gamma < 1$ the distribution of k is a stretched exponential and not a power law.
 - if $\gamma = 1$ the distribution of k is a power law, as before.
 - if $\gamma > 1$ the distribution of k is a "Winner-Take-All" in which one node ends up with an extremely large number of connections, while the rest are are distributed exponentially.
- Models which require fine tuning of the parameters to produce the desired result are often suspect.
- However, a stretched exponential is not always readily distinguishable from a power law.

Method 3: Continuous Phase Transitions

- At the critical point of many phase transitions, physical quantities such as the specific heat or magnetic susceptibility diverge.
- The origin of this divergence is the fact that at the critical point, there are "long-tailed" correlations across the system which decay as a power law.
- At the critical point, the system is scale-free.
- Away from the critical point, correlations decay exponentially.
- The specific heat and other quantities also obey a power law at the critical point.
- The exponents describing these power laws are *universal*, in the sense that there are only a few possible sets of exponents, and a particular set of exponents describe a very wide range of different systems.

Phase Transitions, continued

- The universality of continuous phase transitions is an amazing fact which is well understood theoretically and demonstrated experimentally.
- Thus, it is sometimes argued that power laws are evidence for a system in a critical state, poised between two different phases.
- Moreover, there are also efforts to find universal power laws: a wide range of systems described by the same exponent.
- Often, the underlying assumption to these attempts is the belief that power laws must arise as the result of long-range correlations or organization of some sort.
- But we've seen that this needn't be the case.
- Also, is there any argument for why things should be tuned to a transition point?

Method 4: Self-Organized Criticality

- There are a number of models which "tune themselves" to a critical state, and hence produce power-law distributed phenomena.
- In dynamical systems parlance, the critical point is an attractor.
- The original model can be thought of as a sandpile, in which grains of sand are added one-by-one. The subsequent distribution of avalanches follows a power law.
- An appealing aspect of SOC is that it does not require parameter fine tuning.
- However, others have argued that this is not the case.
- SOC has generated quite a bit of interest/hype.
- Self-organized critical models are interesting, but in my view are unlikely to explain more than a tiny fraction of the myriad power laws observed empirically.

Method 5: Optimization

- Mandelbrot in the late 1950's argued that power laws could arise from an optimization process for transmitting words.
- The following discussion follows Mitzenmacher (2004).
- Let p_j be the frequency of the jth most used word.
- Let C_j be the cost of transmitting the j^{th} word.
- Use $C_j \sim \log j$.
- What set of p_j 's minimizes the average value of C_j ?
- The answer to this question is a power law: $p_j \sim j^{alpha}$.
- There are other optimization processes that lead to power laws, e.g., highly optimized tolerance (J.M. Carlson and J. Doyle, PRL 84, 25292532. 2000.)

Method 6: Many More...

- There are a lots of other ways that one can form power law distributions.
- Many of these involve multiplicative processes of some sort.
- See the review articles by Newman, Mitzenmacher, and Sornette.

Power Laws Summary

- There are many simple, non-complex ways to make power laws.
- These mechanisms are very different from each other.
- They are not necessarily an indicator of complexity or correlation or organization.
- They are not necessarily an indicator of criticality–of a system on the edge of a phase transition.
- Many of the claims in the literature for the existence of power laws may be based on faulty data analysis.
- Power laws and other long-tail distributions are very common and important. Their properties are very different from Gaussian distributions, upon which much of our intuition is based.
- It seems to me that the rich-get-richer models are a good description/explanation of a wide range of phenomena.