Differential Equations Homework Two

Due Friday, October 10, 2014

1. Consider the initial-value problem

$$
\begin{equation*}
\frac{d y}{d t}=3 y^{\frac{2}{3}}, y(0)=0 \tag{1}
\end{equation*}
$$

(a) Show that $y_{1}(t)=0$ is a solution to Eq. (1).
(b) Show that $y_{2}(t)=t^{3}$ is a solution to Eq. (1).
(c) On the same axes, make a rough sketch of $y_{1}(t)$ and $y_{2}(t)$.
2. The Lotka-Volterra equations are:

$$
\begin{align*}
& \frac{d R}{d t}=A R-B R F \tag{2}\\
& \frac{d F}{d t}=C R F-D F \tag{3}
\end{align*}
$$

We will use the parameter values $A=2, B=0.5, C=0.2$, and $D=1$. Using my SIR model code (or starting from scratch), write a program that will solve the LV model (Eqs. (2) and (3)) and produce plots of R vs. t, F vs. t and the trajectory in phase space: a plot of F vs. R. There is no need to hand in this code.
(a) Suppose we change Eq. (2) to:

$$
\begin{equation*}
\frac{d R}{d t}=A R\left(1-\frac{R}{N}\right)-B R F \tag{4}
\end{equation*}
$$

Biologically, what does this mean? What is the meaning of N ?
(b) Modify your code so that it solves the modified system (i.e, Eqs. (4) and (3). Use $N=20$. What behavior do you observe? Try several different initial conditions? Include printouts of a few plots.
(c) Double the value of C. How does this change the long-run behavior of the rabbit and fox populations? Briefly explain why your results make sense.
(d) Return C to its original value but now make $N=2000$. What long-term behavior do you observe? Explain.
(e) Let's modify the equations further to allow for some nonlinearity in the rabbit-fox interaction:

$$
\begin{gather*}
\frac{d R}{d t}=A R\left(1-\frac{R}{N}\right)-B R F^{\alpha} \tag{5}\\
\frac{d F}{d t}=C R F^{\alpha}-D F \tag{6}
\end{gather*}
$$

where α is a parameter that controls the nonlinearity.
i. Set $\alpha=1.1$. What is the long-term behavior of the populations?
ii. Set $\alpha=1.5$. What is the long-term behavior of the populations?

Figure 1: A bifurcation diagram.
3. Figure 1 shows the bifurcation diagram for a differential equation (not the logistic equation with harvest).
(a) Sketch the phase line for the system for $h=10$.
(b) Sketch the phase line for the system for $h=30$.
(c) Sketch the phase line for the system for $h=40$.
4. Consider the differential equation:

$$
\begin{equation*}
\frac{d y}{d t}=r y-y^{3} \tag{7}
\end{equation*}
$$

For each of the following r values, sketch the right-hand side of Eq. (7) (using WolframAlpha if you wish) and draw the phase line for y.
(a) $r=-1$
(b) $r=0$
(c) $r=1$
5. Sketch a bifurcation diagram for Eq. (7).

