
Differential Equations

Homework Three

Due Friday, October 31, 2014

1. Consider a linear system of two ODEs:

d~Y

dt
= A~Y , (1)

where A is the matrix

A =

(
2 1
3 4

)
, (2)

and

~Y =

(
x(t)
y(t)

)
. (3)

(a) Find the eigenvalues and eigenvectors of A.1

(b) Write down two linearly independent solutions to Eq. (1).

(c) Show that

~Y3(t) = et
(

2
−2

)
(4)

is a solution to Eq. (1).

(d) Show that

~Y3(t) = e4t
(

1
3

)
(5)

is not a solution to Eq. (1).

(e) Show that

~Y3(t) = e5t
(

2
3

)
(6)

is not a solution to Eq. (1).2

(f) Determine the solution to Eq. (1) that has ~Y (0) = (0, 1).

(g) How would you classify the equilibrium point at the origin?

(h) Using wolframalpha to assist you, sketch the phase plane for this system. Include
the two straight-line solutions that you found in question 1b.

1You should find that λ1 = 5 and λ2 = 1. The eigenvectors are

~V1 =

(
1
3

)
, and ~V2 =

(
1
−1

)
.

2The point of the last few exercises is to show that both the eigenvalue and the eigenvector have to be

right in order to ~Y (t) to be a solution.



2. Consider again the Lotka–Volterra system:

dx

dt
= Ay −Bxy , (7)

dy

dt
= Cxy −Dy . (8)

(a) Determine the two equilibria for this system.

(b) Find the Jacobian matrix.

(c) Evaluate the Jacobian matrix at the non-zero equilibrium point and determine its
eigenvalues. What do the eigenvalues tell us about behavior near the equilibrium
point. Is this consistent with what we have seen numerically?

(d) Evaluate the Jacobian matrix at the zero equilibrium point. Choose A = 4, B =
3, C = 2, D = 4, and find the matrix’s eigenvalues. What do the eigenvalues tell
us about behavior near the equilibrium point? Does this make sense biologically?

3. Optional, but recommended. In the previous assignment we modified the prey term in
the Lotka–Volterra equations so that they grow logistically in the absence of predators:

dx

dt
= Ax

(
1− x

N

)
−Bxy . (9)

In the following, let A = 2, B = 0.5, C = 0.2, D = 1, and N = 20.

(a) Solve for the non-zero equilibrium point.

(b) Find the Jacobian matrix.

(c) Evaluate the Jacobian matrix at the non-zero equilibrium.

(d) Find the matrix’s eigenvalues. What do the eigenvalues tell us about the be-
havior of the model near the equilibrium? Is this consistent with what you saw
numerically?

4. Optional, but recommended. Here is a clever way to prove/verify Euler’s formula.
Define the following function:

g(x) = (cosx + i sinx) e−ix . (10)

(a) Show that dg
dx

= 0. This means that g(x) is a constant function. Thus, it is the
same for all values of x.

(b) Show that g(0) = 1.

(c) Since g(x) is constant, it must be that g(x) = g(0). Use this fact to derive Euler’s
formula.

5. Optional: Use complex exponentials to derive “double angle formulas.” That is,
determine expressions for cos(2x) and sin(2x) in terms of cos(x) and sin(x). To do so,
use the fact that:

e2ix = eixeix . (11)

Use Euler’s formula on each complex exponential. Multiply, simplify, and group the
real parts and the imaginary parts. Like magic, you will have derived two trig identities.
Many other trig identies can be derived via similar hijinks.



6. Optional: Here is another handy use of Euler’s formula,

eix = cos(x) + i sin(x) . (12)

Consider the following integral: ∫
eax sin(bx) dx . (13)

Ordinarily, you would do this integral using integration by parts. But there is another
way to do it. Re-write the sin(bx) term in the integrand using Euler’s formula. I.e.,

sin(bx) = =eibx , (14)

where = means “imaginary part of.” You have now converted the integral into some-
thing involving only exponentials. Do the integral and you will get an algebraic ex-
pression. Solve for the imaginary part of this expression, and you’ll have the answer
to the integral of Eq. (13). To do so, you’ll need to use Euler’s formula in reverse, and
will also need to get rid of any i’s in the denominator of any fractions. This method for
evaluating an intergral is a big algebra intensive, but it does avoid having to integrate
by parts.


