Chapter N2: Vector Calculus

Don't be intimidated by the title of this chapter. The main goal of this chapter is to learn how to describe motion. ("Describing motion" might have been a friendlier title.) We aren't interested in asking what causes motion-we talked about that in N1 and it will also be the topic of N3. Here, we develop a mathematical vocabulary that will let us describe the motion we observe.

N2.1 \& N2.2: The Time-Derivative of a Vector and Velocity

In Book C, we often wrote

$$
\begin{equation*}
v=\frac{\Delta x}{\Delta t} \tag{1}
\end{equation*}
$$

where $d x$ was understood to be a change in position. (Sometimes we used $d x$ instead of Δx.) How small must Δx and Δt be? We said that Δt should be small enough so that Δx doesn't change much during $d t$.

But we can do better than this. We define

$$
\begin{equation*}
v(t)=\frac{d x(t)}{d t} \equiv \lim _{\Delta t \rightarrow 0} \frac{x(t+\Delta t)-x(t)}{\Delta t} \tag{2}
\end{equation*}
$$

Here $x(t)$ means the value of x at time t. This equation is just "rise over run", where the "run" (Δt) is very very tiny.

The quantity $v(t)$ is the instantaneous velocity - the velocity at the instant in time t. Geometrically, $v(t)$ is the instantaneous slope of $x(t)$.

The derivative of a vector is defined as:

$$
\frac{d \vec{r}(t)}{d t} \equiv\left[\begin{array}{c}
\frac{d x(t)}{d t} \tag{3}\\
\frac{d y(t)}{d t} \\
\frac{d z(t)}{d t}
\end{array}\right]
$$

N2.3: The Definition of Acceleration

Acceleration is defined as the rate of change of velocity:

$$
\begin{equation*}
\vec{a} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{v}}{\Delta t} \equiv \lim _{\Delta t \rightarrow 0} \frac{\vec{v}(t+\Delta t)-\vec{v}(t)}{\Delta t} \tag{4}
\end{equation*}
$$

Thus, the acceleration is derivative of the velocity

$$
\begin{equation*}
\vec{a}=\frac{d \vec{v}}{d t} \tag{5}
\end{equation*}
$$

The average acceleration $\vec{a}_{\Delta t}$ during a time interval Δt is defined as:

$$
\begin{equation*}
\vec{a}_{\Delta t} \equiv \frac{\Delta \vec{v}}{\Delta t}=\frac{\vec{v}(t+\Delta t)-\vec{v}(t)}{\Delta t} \tag{6}
\end{equation*}
$$

Example: A car goes from zero to 60 miles per hour in 12 seconds. What is the magnitude of its average acceleration during these 12 seconds?

N2.4: Motion Diagrams

For both of the motion diagrams, assume that the time between dots is 0.1 seconds.

1. For the motion diagram in Fig. 1:
(a) What is the average velocity between 1 and 2 ?
(b) What is the average velocity between 2 and 3?
(c) What is the approximate acceleration at 2?
2. For the motion diagram in Fig.2:
(a) What is the magnitude of the average velocity between 1 and 2 ?
(b) What is the magnitude of the average velocity between 2 and 3 ?
(c) What is the magnitude of the acceleration at point 2?

N2.5: Numerical Results from Motion Diagrams

Remember that velocities and accelerations are vectors. So to add and subtract them, you can't just add and subtract their magnitudes.

N2.6: Uniform Circular Motion

The main equation:

$$
\begin{equation*}
a=\frac{v^{2}}{r} \tag{7}
\end{equation*}
$$

where the direction of \vec{a} is directly toward the center of the circle. This formula only applies if the object is moving in a circle at a constant speed!

Figure 1: A motion diagram

Figure 2: Another motion diagram

Practice

Draw velocity and acceleration arrows for the following two motion diagrams. Estimate the magnitude of the acceleration in each case.

