Chapter N3: Forces from Motion

N3.1: The Kinematic Chain \& N3.6: Graphs of 1D Motion

Velocity is the time derivative of position. And acceleration is the time derivative of velocity:

$$
\begin{equation*}
v(t)=\frac{d x(t)}{d t} \text { and } a(t)=\frac{d v(t)}{d t} \tag{1}
\end{equation*}
$$

In English, this means that the velocity tells you how fast your position x is changing, and the acceleration tells you how fast your velocity is changing.

You should understand this relationship well enough to be able to make qualitatively correct graphs.

Example: For the following scenario, sketch separate plots of x, v, and a vs. t.

- I was driving fast and then I saw a police car and quickly slowed down.

N3.2: Net Force Diagrams \& N3.3: Examples

To make a free body diagram, simply make a diagram of all the forces acting on a single object. The net force diagram is then obtained by rearranging the force arrows so that it's clear how the forces add together.

Examples:

1. A 3 kg object hangs from a string.
2. A car accelerates along a straight, smooth road.

N3.5: Third-Law Pairs

- Pairs of forces linked by Newton's third law always act on different objects.
- When two forces acting on the same object are equal and opposite because the object is at rest, this is a result of the second law, not the third.
- See the discussion of this on p. 46.

Practice:

Free Body Diagrams: For each of the following scenarios, draw a free-body diagram and a net-force diagram, and answer any additional quantitative questions.

1. A 50 kg box of tofu rests on the back of a pick-up truck. The truck accelerates at 2 $\mathrm{m} / \mathrm{s}^{2}$. What are the magnitudes of all the forces acting on the box?
2. A 50 kg box of tofu rests on the floor of an elevator. The elevator accelerates upward at $2 \mathrm{~m} / \mathrm{s}^{2}$. What are the magnitudes of all the forces acting on the box?
3. A 1000 kg car travels at a constant speed of $20 \mathrm{~m} / \mathrm{s}$ along a road. There is a vertical dip in the road that is well approximated by a circle with a radius of 50 m . What is the net force acting on the car? What is the normal force exerted by the road on the car?

Kinematics: For the following scenarios, sketch separate plots of x, v, and a vs. t.

1. I was walking to class slowly and then I realized I was late so I started running.
2. I drove up slowly to the red light. I waited a while. Then I sped off.
3. I was driving quickly and then stopped suddenly at a red light. I was a little in the intersection so I drove backwards and got out of the intersection. I then waited a while for the light to change. When it changed, I drove off.

Reverse Kinematics:

1. A net force of 100 Newtons is applied to a 25 kg crate of tofu for 3 seconds. Sketch the acceleration, velocity, and position of the box.
2. A skydiver jumps out of an airplane. She falls toward the earth, and eventually reaches a constant velocity. For each of the following, sketch a free body diagram and net-force diagram:
(a) The instant after she jumps out of the plane.
(b) She's been falling for a little while, but hasn't reached her terminal velocity yet.
(c) She's falling at her terminal velocity.
3. Make a sketch of the skydiver's y , v , and a vs. t .

Chapter N4: Motion from Forces

N4.1: The Reverse Kinematic Chain

As we saw in the last chapter, velocity is the time derivative of position. And acceleration is the time derivative of velocity:

$$
\begin{equation*}
v(t)=\frac{d x(t)}{d t} \text { and } a(t)=\frac{d v(t)}{d t} \tag{2}
\end{equation*}
$$

This tells us how to go from position $x(t)$ to acceleration $a(t)$. And Netwon's second law $(\vec{F}=m \vec{a})$ lets us figure out what force caused the motion.

This chapter is about "working backwards." Given a force, we can figure out an object's acceleration. We can then take anti-derivatives to go from acceleration to velocity, and velocity to position.

N4.2: Graphical Derivatives

Example:

1. A bug crawls at a constant speed of $3 \mathrm{~m} / \mathrm{s}$. Sketch its speed and position as a function of time.
2. A physics textbook falls straight down at a constant acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$. Sketch its acceleration, velocity, and position as a function of time.
