Chapter N4: Motion from Forces

N4.1: The Reverse Kinematic Chain

As we saw in the last chapter, velocity is the time derivative of position. And acceleration is the time derivative of velocity:

$$
\begin{equation*}
v(t)=\frac{d x(t)}{d t} \text { and } a(t)=\frac{d v(t)}{d t} \tag{1}
\end{equation*}
$$

This tells us how to go from position $x(t)$ to acceleration $a(t)$. And Netwon's second law $(\vec{F}=m \vec{a})$ lets us figure out what force caused the motion.

This chapter is about "working backwards." Given a force, we can figure out an object's acceleration. We can then take anti-derivatives to go from acceleration to velocity, and velocity to position.

N4.2: Graphical Derivatives

Example:

1. A bug crawls at a constant speed of $3 \mathrm{~m} / \mathrm{s}$. Sketch its speed and position as a function of time.
2. A physics textbook falls straight down at a constant acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$. Sketch its acceleration, velocity, and position as a function of time.

N4.3: Free Fall in One Dimension

If an object is acted on only by gravity near the surface of the earth (i.e., we ignore drag), then its z-position and velocity as a function of time are given by:

$$
\begin{gather*}
v_{z}(t)=v_{0}-g t \tag{2}\\
z(t)=-\frac{1}{2} g t^{2}+v_{0} t+z_{0} \tag{3}
\end{gather*}
$$

where v_{0} and z_{0} are its initial velocity and position.

Practice:

1. You drop a TAB mug off a 30 meter cliff. How long does it take the mug to hit the ground?
2. An object start at rest. It accelerates at $10 \mathrm{~m} / \mathrm{s}^{2}$ for five seconds. It then accelerates at $-10 \mathrm{~m} / \mathrm{s}^{2}$ for three seconds. Sketch a qualitatively accurate graphs for its acceleration, velocity, and position as a function of time.
3. A net force of 100 Newtons is applied to a 25 kg crate of tofu for 3 seconds. Sketch the acceleration, velocity, and position of the box.
4. A skydiver jumps out of an airplane. She falls toward the earth, and eventually reaches a constant velocity. For each of the following, sketch a free body diagram and net-force diagram:
(a) The instant after she jumps out of the plane.
(b) She's been falling for a little while, but hasn't reached her terminal velocity yet.
(c) She's falling at her terminal velocity.
5. Make a sketch of the skydiver's y, v , and a vs. t .
