Chapter C12: Power
 Physics I
 College of the Atlantic

C12.1: Power

Power in physics is defined as rate of energy transfer-energy per time.

$$
\begin{equation*}
\text { Power } \equiv \frac{\mid \Delta \text { Energy } \mid}{\Delta \text { time }} . \tag{1}
\end{equation*}
$$

The unit of power is the Watt;

$$
\begin{equation*}
1 \mathrm{Watt} \equiv 1 \mathrm{~J} / \mathrm{s} \tag{2}
\end{equation*}
$$

Power companies measure energy in units of kilowatt hours

$$
\begin{equation*}
1 \mathrm{kWh}=3.6 \mathrm{MJ} \tag{3}
\end{equation*}
$$

One kilowatt hour is the amount of energy that is transferred if one kilowatt of power is delivered for one hour.

Examples:

1. You need a heater that can raise the temperature of water $30^{\circ} \mathrm{C}$ in 15 minutes. What power must the heater be capable of delivering?
2. How much does it cost in Maine to run 2000 Watt electric heater for 8 hours? How much would this cost per month?

Some handy info

- Conversion Factors:

$$
\begin{gather*}
1 \mathrm{kWh}=3.6 \mathrm{MJ} \tag{4}\\
746 \mathrm{Watts}=1 \text { horsepower } \tag{5}
\end{gather*}
$$

- The average US energy consumption: 250 kWh per person per day.
- An electric dryer draws around 3 kilowatts.
- A toaster draws around 1000 Watts.
- A kWh of electrical energy costs $\$ 0.185$ in Maine.
- A typical Maine home uses around 500 kWh of electricity a month.
- A typical solar cell in Maine generates around 10 W of electrical power per m^{2} of solar cell.
- Burning a kg of gasoline releases roughly 46 MJ of internal energy.
- Burning a kg of natural gas releases roughly 55 MJ of internal energy.
- For chemical reactions, the energy released per kg ranges between 10 and 100 MJ .
- For nuclear reactions, the energy released per kg ranges between 50 and 500 TJ . (1TJ $=$ $1 \times 10^{12} \mathrm{~J}$.)
- The calorie is a unit of energy defined as the amount of energy needed to raise one gram of water by one degree C. $1 \mathrm{cal}=4.182 \mathrm{~J}$.
- The "calorie" used to measure the energy content of food is actually equal to 1000 calories. Food-content calories are referred to as dietary calories, food calories, and large calories. Sometimes large calories are abbreviated C or Cal.

C13.2: Cross Product

The cross product is, like the dot product, a way to "multiply" two vectors together. The dot product takes two vectors and turns them into a scalar. The cross product takes two vectors and returns another vector.

$$
\begin{equation*}
\operatorname{mag}(\vec{u} \times \vec{w})=u w \sin \theta \tag{6}
\end{equation*}
$$

A more physical/geometric way to think of this is:

$$
\begin{equation*}
\operatorname{mag}(\vec{u} \times \vec{w})=u w_{\perp}=u_{\perp} w \tag{7}
\end{equation*}
$$

The direction of $\vec{u} \times \vec{w}$ is perpendicular to the plane that contains \vec{u} and \vec{w} and is given by the right hand rule.

In components:

$$
\vec{u} \times \vec{w} \equiv\left[\begin{array}{l}
u_{y} w_{z}-u_{z} w_{y} \tag{8}\\
u_{z} w_{x}-u_{x} w_{z} \\
u_{x} w_{y}-u_{y} w_{x}
\end{array}\right]
$$

We won't use this equation explicitly, but it is perhaps comforting to know that it exists. Or maybe not. Anyway...

Note that $\vec{u} \times \vec{v}=-\vec{v} \times \vec{u}$.

Examples

1. Let \vec{u} be a displacement vector of 2 meters that points due east, and let \vec{w} be a vector with a magnitude of 3 meters that points due south.
(a) Find $\vec{u} \times \vec{w}$.
(b) Find $\vec{u} \cdot \vec{w}$.
(c) Find $\vec{u} \cdot \vec{u}$.
(d) Find $\vec{u} \times \vec{u}$.
2. Let \vec{v}_{1} be a displacement vector of 3 meters that points due east, and let \vec{v}_{2} be a vector with a magnitude of 2 meters that points 45 degrees north of west.
(a) Find $\vec{v}_{1} \times \vec{v}_{2}$.
(b) Find $\vec{v}_{1} \cdot \vec{v}_{2}$.
3. Let \vec{a} be a displacement vector of 3 meters that points due east, and let \vec{b} be a vector with a magnitude of 2 meters that points due west.
(a) Find $\vec{a} \times \vec{b}$.
(b) Find $\vec{a} \cdot \vec{b}$.
