Chapter N1: Newton's Laws

Physics I

College of the Atlantic

N1.1: The Newtonian Synthesis

This is a nice historical summary.

N1.2: Newton's First Law

For an isolated system, \vec{v}_{CM} is constant. This is equivalent to the principle of conservation of momentum. Another way this is often stated is: Objects at rest stay at rest and objects in motion remain in motion, unless acted upon by an external force.

N1.3: Newton's Third Law

An interaction between two objects A and B exerts forces on each other that are opposite but equal in magnitude: $\vec{F_A} = -\vec{F_B}$.

N1.4: Newton's Second law

$$\vec{F}_{\text{net}} = m\vec{a} \tag{1}$$

and, for a system of objects

$$\vec{F}_{\text{net,ext}} = m\vec{a}_{\text{CM}}$$
 (2)

Example: A 150g baseball is thrown at 30 m/s. The act of throwing takes around 0.2 seconds. What is the average force exerted on the ball?

N1.5: Classification of Forces

- Normal force $\vec{F_N}$: The part of the contact force acting perpendicular to an interface between solids
- Static friction \vec{F}_{SF} : contact force that prevents surfaces from moving relative to each other. "Sticking force."
- Kinetic friction: \vec{F}_{KF} : contact force that oppose motion of surfaces relative to each other.
- Drag forces $\vec{F_D}$: oppose motion of object relative to a fluid
- \bullet Lift forces $\vec{F_{\rm L}}$: perpendicular to object's motion relative to a fluid
- Thrust forces \vec{F}_{Th} : exerted when propeller, jet engine, etc. forces fluid to move.

N1.6: Free-Body Diagrams

Learning to make accurate free-body diagrams is essential for applying Newton's laws. Page 13 contains helpful advice, some of which is excerpted below:

- 1. Start by imagining the object in its context. Think about things that might interact with the object.
- 2. Draw a sketch of the object alone. Free-body diagrams apply to a single object.
- 3. Draw an arrow for each force acting directly on the object. Label each arrow.
- 4. All arrows should correspond to a force. Remember, that a force always arises as the result of an interaction between two objects.

Examples: Draw a free-body diagram for the following situations:

- 1. A person sitting on a chair.
- 2. A box sliding down an inclined plane.