# Chapter N4: Motion from Forces 

## Physics I

College of the Atlantic

## N4.1: The Reverse Kinematic Chain

As we saw in the last chapter, velocity is the time derivative of position. And acceleration is the time derivative of velocity:

$$
\begin{equation*}
v(t)=\frac{d x(t)}{d t} \text { and } a(t)=\frac{d v(t)}{d t} \tag{1}
\end{equation*}
$$

This tells us how to go from position $x(t)$ to acceleration $a(t)$. And Newton's second law $(\vec{F}=m \vec{a})$ lets us figure out what force caused the motion.

This chapter is about "working backwards." Given a force, we can figure out an object's acceleration. We can then take anti-derivatives to go from acceleration to velocity, and velocity to position.

## N4.2: Graphical Anti-Derivatives

## Example:

1. A cat runs at a constant speed of $3 \mathrm{~m} / \mathrm{s}$. Sketch its speed and position as a function of time.
2. A physics textbook falls straight down at a constant acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$. Sketch its acceleration, velocity, and position as a function of time.

## N4.3: Free Fall in One Dimension

If an object is acted on only by gravity near the surface of the earth (i.e., we ignore drag), then its z-position and velocity as a function of time are given by:

$$
\begin{gather*}
v(t)=v_{0}+g t  \tag{2}\\
x(t)=x_{0}+v_{0} t+\frac{1}{2} g t^{2} . \tag{3}
\end{gather*}
$$

