Chapter C2: Vector Practice

Physics I

College of the Atlantic

Figure C2.12 Vectors for problems C2T.9 through C2T.11.

- C2T.9 Consider the two vectors shown in figure C2.12. The sum of these vectors points most nearly A. Up. B. Down. C. Right. D. Left.
- C2T.10 Consider the two vectors shown in figure C2.12. The vector w u points most nearly A. Up. B. Down. C. Right. D. Left.
- C2T.11 Consider the two vectors shown in figure C2.12. To change *u* into *w*, one would have to A. Multiply by -1. B. Multiply by 120°.
 - C. Add the vector $\vec{u} + \vec{w}$.
 - D. Add the vector $\vec{w} \vec{u}$.
 - E. Add the vector $\vec{u} \vec{w}$.
 - F. Do none of the above.

1.

- 2. Let $\vec{D_1} = [5m, 4m]$ and $\vec{D_2} = [-1m, -3m]$.
 - (a) Calculate the components of the sum of the two vectors. I.e., find $\vec{D_1} + \vec{D_2}$.
 - (b) Draw $\vec{D_1}$, $\vec{D_2}$, and $\vec{D_1} + \vec{D_2}$, and convince yourself that the geometric (tip to tail) view of vector addition is the same as the addition formula you just used.

3. Let
$$\vec{D}_3 = [3m, -5m]$$
 and $\vec{D}_4 = [2m, -2m]$.

- (a) Calculate the components of the difference of the two vectors. I.e., find $\vec{D_4} \vec{D_3}$.
- (b) Draw $\vec{D_4}$, $\vec{D_3}$, and $\vec{D_4} \vec{D_3}$, and convince yourself that the geometric (tip to tail) view of vector addition is the same as the addition formula you just used.
- 4. Consider the following two vectors:

$$\vec{A} = -4m\hat{x} + 6m\hat{y} , \qquad (1)$$

$$\vec{B} = 10m, 53 \text{ degrees south of east}.$$
 (2)

- (a) What is the magnitude and direction of \vec{A} ?
- (b) What are the components of \vec{B} ?
- (c) What is $\vec{A} + \vec{B}$? Express your answer both in components and in magnitude/direction form.
- (d) What is $3\vec{A}$? Express your answer both in components and in magnitude/direction form.
- (e) What is $\vec{A} \vec{B}$? Express your answer both in components and in magnitude/direction form.