Chapter C8: Force and Energy Practice Physics I
 College of the Atlantic

1. Let \vec{U} have a magnitude of $10 \mathrm{~m} / \mathrm{s}$ and a direction due west. Let \vec{W} have a magnigude of $5 \mathrm{~m} / \mathrm{s}$ and a direction of 37 degrees north of east. What is $\vec{U} \cdot \vec{W}$?
2. Consider two displacement vectors: $\overrightarrow{v_{1}}=[3 m,-4 m]$ and $\overrightarrow{v_{2}}=[2 m,-2 m]$. Calculate $\overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}$. Calculate the angle between $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$.
3. A 1000 kg car rolls down a 37 degree incline at a constant speed of $20 \mathrm{~m} / \mathrm{s}$.
(a) In one second, what energy transfer does the gravitational interaction give to the car?
(b) Where does this energy transfer go?
(c) What is the change in the gravitational potential energy of the cart in one second?
4. A person stands on a tree on which there is a rope swing. The person lets go of the tree and swings back and forth. At the bottom of the arc, the person is three meters lower than where they started.
(a) What interactions is the person participating in?
(b) Which of these interactions change the person's kinetic energy?
(c) What is the person's speed at their lowest point?
5. A car goes over the crest of a hill at $20 \mathrm{~m} / \mathrm{s}$. The car then coasts to the bottom of the hill, 50 meters below. Ignoring friction, what is the car's speed at the bottom?
