Summary of Unit Two

Relativity and Synchronizing Clocks

Physics II
Special Relativity

David P. Feldman

http://tiny.cc/RelativityAtCOA

Maxwell's Equations

- Equations that describe all of electrodynamics.
- Say that light travels at a speed of c (approx $3 \times 10^{\wedge} 8 \mathrm{~m} / \mathrm{s}$) without reference to any reference frame.
- Physicists assume that light propagated through the ether, and so the speed of light must be relative to the ether.
- Michelson and Morley fail to detect the ether.

Physics at the end of the 1800s

1. Principle of Relativity: laws of physics are the same in all reference frames
2. Maxwell's Equations. Speed of light =c.
3. Galilean Transformations.

- The three things cannot all be true.
- Most physicists think Maxwell's Equations need minor adjustments.
- Einstein says that the Galilean Transformation equations are wrong. Time is not absolute.

Gatiloan Transformations

- Relate spaca ordinates mea different frame
- The primed framı respect to the un-p
- t' = t
- $x^{\prime}=x-\beta t$
- $y^{\prime}=y$
- To convert velocit
- $v^{\prime}=v-\beta$
- Think of the (ions as a "bi-lh

Now What Now, if not Galileo?

- Einstein: The speed of light is the same in all reference frames.
- A pair of clocks in an inertial reference frame are synchronized if they correctly measure the speed of light to be the speed of light.
- This gives us a way to synchronize clocks.

The Radar Method

- A way to determine spacetime coordinates of an event using a single clock at the origin.
- Send light signal out at time t_{A}. It reflects off something and returns at time t_{B}. The spacetime coordinates of the reflection event E.
- $\mathrm{t}_{\mathrm{E}}=(1 / 2)\left(\mathrm{t}_{\mathrm{A}}+\mathrm{t}_{\mathrm{B}}\right)$
- $\mathrm{X}_{\mathrm{E}}=(1 / 2)\left(\mathrm{t}_{\mathrm{A}}-\mathrm{t}_{\mathrm{B}}\right)$

Spacetime Diagrams

- Super useful way to visualize events in spacetime.
- Remember that time goes up.

