Summary of Unit Six

The Lorentz Transformation

Physics II
Special Relativity

David P. Feldman

http://tiny.cc/RelativityAtCOA

Two-Observer Coordinate Systems

- A circle is the set of points a constant distance from the origin.
- Markings on rotated axes are connected by circles.
- $d^{2}=x^{2}+y^{2}$

Two-Observer Coordinate Systems

- A hyperbola is the set of points a constant spacetime interval from the origin.
- t' axis has slope $1 / \beta, x^{\prime}$ axis has slope β
- $s^{2}=t^{2}-x^{2}$
- Markings on primed axes are connected by hyperbolas.

Two-Observer Coordinate Systems

- To calibrate t' axis:

$$
\Delta t=\gamma \Delta t^{\prime} \quad \gamma=
$$

- Read the primed coordinates via parallel lines.
- Example: $x^{\prime} \approx 1.6, \quad t^{\prime} \approx 3.8$

The Lorentz Transformation

$$
\begin{aligned}
t & =\gamma\left(t^{\prime}+\beta x^{\prime}\right) \\
x & =\gamma\left(\beta t^{\prime}+x^{\prime}\right) \\
t^{\prime} & =\gamma(t-\beta x) \\
x^{\prime} & =\gamma(-\beta t+x)
\end{aligned}
$$

- Relates space time coordinates in one frame to spacetime coordinates in another frame.
- Relativistic version of the Galilean transformations
- A "dictionary" that lets you translate events from one frame to another.
- We've gotten here by assuming that the speed of light is constant in all frames.
- Note: The Lorentz transformation and the two-observer diagram are complementary ways of expressing the same relationship.

