Cryptography: Part 2: One-time Pads Physics II: Modern Physics
 College of the Atlantic

Here is a bit of a message that was encoded using a running key ${ }^{1}$:
IIXAQTEHBTHBNZOX
Subtract the word THE from each three-letter sequence in the ciphertext. That is,

$$
\begin{align*}
\text { IIX }-\mathrm{THE} & =? \tag{1}\\
\text { IXA }-\mathrm{THE} & =? \tag{2}\\
\mathrm{XAQ}-\mathrm{THE} & =? \tag{3}
\end{align*}
$$

and so on, up to

$$
\begin{equation*}
\mathrm{ZOX}-\mathrm{THE}=? \tag{4}
\end{equation*}
$$

Which of the resulting three-letter sequences could possibly be a part of an English word?

[^0]
[^0]: ${ }^{1}$ This example was taken from Susan Loepp and William K. Wooters, Protecting Information: From Classical Error Correction to Quantum Cryptography, Cambridge University Press, 2006.

