## Length Contraction

Physics II: Modern Physics<br>College of the Atlantic

1. Anastajia and Beowulf have a set of chopsticks. Each chopstick is 2 cm long. Beowulf gets on a spaceship traveling at half the speed of light, in a direction parallel to the chopsticks. The chopsticks remain behind on earth.
(a) What is the length of the chopsticks in Beowulf's frame?
(b) How fast would Beowulf have to go so that the chopsticks in his frame had a length of 1 cm ?
2. Suppose $\beta=3 / 5$. In this case
(a) What is $\gamma$ ?
(b) What is $\sqrt{1-\beta^{2}}$ ?
(c) If an object has a rest length of 10 meters and you see it moving at a speed of $\beta$, what length do you observe?
(d) If an object a rest length of 8 meters and you are moving at a speed of $\beta$ with respect to that object, what is the object's length?

## Length Contraction

Physics II: Modern Physics<br>College of the Atlantic

1. Anastajia and Beowulf have a set of chopsticks. Each chopstick is 2 cm long. Beowulf gets on a spaceship traveling at half the speed of light, in a direction parallel to the chopsticks. The chopsticks remain behind on earth.
(a) What is the length of the chopsticks in Beowulf's frame?
(b) How fast would Beowulf have to go so that the chopsticks in his frame had a length of 1 cm ?
2. Suppose $\beta=3 / 5$. In this case
(a) What is $\gamma$ ?
(b) What is $\sqrt{1-\beta^{2}}$ ?
(c) If an object has a rest length of 10 meters and you see it moving at a speed of $\beta$, what length do you observe?
(d) If an object a rest length of 8 meters and you are moving at a speed of $\beta$ with respect to that object, what is the object's length?
