Chapter E3: Fields and Currents

E3.2 Field of a Charged Disk

The field due to a disk of radius R, charge density σ, a distance z above the disk along its central axis is given by:

$$
\begin{equation*}
E_{z}=2 \pi k \sigma\left[1-\frac{1}{\sqrt{1+\left(\frac{R}{z}\right)^{2}}}\right] \tag{1}
\end{equation*}
$$

Important limiting case: in the infinite disk limit. If the disk is infinitely wide, the field above the disk is constant.

E3.3 Field of a Charged Spherical Shell

Field due to a spherical shell with charge Q :

$$
\begin{equation*}
E_{z}=\frac{k Q}{r^{2}} \tag{2}
\end{equation*}
$$

Note that this doesn't depend on the size of the shell.

E3.4 Introduction to Current

Current is defined as the amount of charge flowing per unit time:

$$
\begin{equation*}
I \equiv\left|\frac{\Delta Q}{\Delta t}\right| \tag{3}
\end{equation*}
$$

The direction of conventional current assumes that the charge carriers are positive.
The SI unit of current is the Amp:

$$
\begin{equation*}
1 \mathrm{~A} \equiv 1 \mathrm{C} / \mathrm{s} \tag{4}
\end{equation*}
$$

E3.5 A Microscopic Model

Fields cause electrons to move in a metal. The conduction electrons undergo lots of collisions with the underlying lattice. The average speed at which electrons drift is given by:

$$
\begin{equation*}
v_{d}=n e A v_{d} \tag{5}
\end{equation*}
$$

I think the key to understanding this equation is Fig. E3.7.

E3.6 Current Density

The current density is defined as the current per unit area:

$$
\begin{equation*}
\vec{J} \equiv \lim _{A \rightarrow 0} \frac{\vec{I}}{A}=n q \vec{v}_{d} \tag{6}
\end{equation*}
$$

The current density is proportional to the applied electric field:

$$
\begin{equation*}
\vec{J}=\sigma \vec{E} \tag{7}
\end{equation*}
$$

Where σ is the conductivity, a constant (like density or "hardness") that varies from material to material.

Practice:

1. In class we found that the field due to the a wire of charge Q and length L, a distance from the wire along its axis is given by:

$$
\frac{k Q}{D(D+L)}
$$

(a) What is the behavior of the field in the limit that $D \gg L$? Does this make sense?
(b) What is the behavior of the field in the limit that $L \gg D$? Does this make sense?
(c) Let $L=1$ meter and $Q=1 n C$. If I put a charge of $-3 n C$ at a point a distance $D=.5$ meters from the wire's end, what is the direction and magnitude of the force on the charge?
2. Do problems E3T. 3 - E3T.7.

