Here are some problems for Monday, 1 May, 2023.

1. Prove the following proposition. For all $n \in \mathbb{N}_{0}, 1+2+4+\cdots+2^{n}=2^{n+1}-1$.
2. Prove that:

$$
\begin{equation*}
\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!} \tag{1}
\end{equation*}
$$

3. Prove that for all $n \in \mathbb{N}, n^{2}-n$ is even. Do this proof three ways:
(a) Consider two cases: n is odd and n is even.
(b) Use induction.
(c) Use Proposition 4.2.
4. Find a formula for the sum:

$$
\begin{equation*}
2+4+6+\cdots+2 n . \tag{2}
\end{equation*}
$$

Prove that your formula is correct two ways:
(a) Use Proposition 4.2.
(b) Use induction.

