Here are some problems for Monday, 9 May, 2023.

1. (This is problem 4.30 from the textbook.) A graph is called a tree if can be drawn so that it branches upwards and none of its branches intersect. Two examples of a tree are shown in Fig. 1. Prove that if a tree has n vertices, then it has $n-1$ edges.

Figure 1: Figure from Proofs by Jay Cummings, page 150.
2. Prove that $3^{5 n}-5^{3 n}$ is divisible by 59 for any $n \in \mathbb{N}$.
3. Optional! Possibly challenging. Possibly interesting. I dunno. Given a positive integer s_{1}, let s_{2} be the sum of the squares of the digits of s_{1}. Let s_{3} be the sum of the squares of s_{2}, and so on. Prove that for any choice of s_{1}, the sequence $\left(s_{1}, s_{2}, s_{3}, \ldots\right)$ eventually reaches either 1 or 42 .

