Here are some problems for Wednesday/Thursday May 23/24, 2023. Aim to share solutions to one or two of the problems.

1. Prove that there do not exist three distinct numbers a, b, and c for which: $a+b+c$, $a b, a c, b c$, and $a b c$ are all equal.
2. Prove that if x and y are positive real numbers, then $x+y \geq 2 \sqrt{x y}$.
3. Prove that there does not exist an $n \in \mathbb{N}$ for which $n^{2}+n+1$ is a perfect square.
4. Prove that if x and y are irrational, then $x+y$ is also irrational.
5. Prove that if x is irrational, then $x+y$ is also irrational.
6. Prove that $\forall x, y \in \mathbb{R}$, such that $x \neq y$,

$$
\begin{equation*}
\frac{x}{y}+\frac{y}{x} \leq 2 \tag{1}
\end{equation*}
$$

7. For all real numbers x, with $0<x<1$, prove that

$$
\begin{equation*}
\frac{1}{x(1-x)} \leq 4 \tag{2}
\end{equation*}
$$

8. Let a, b, c be positive real numbers. Prove that if $a b=c$, then $a \leq \sqrt{c}$ or $b \leq \sqrt{c}$.
9. Suppose $n \in \mathbb{Z}$ is a composite integer. Then n has a prime divisor less than or equal to \sqrt{n}.
10. Prove that $x \in \mathbb{R}$ is irrational if and only if it has a different distance from each rational number.
11. Prove that $S_{n} \notin \mathbb{Z}$ for all $n \geq 2$, where

$$
\begin{equation*}
S_{n}=\sum_{k=1}^{n} \frac{1}{k} . \tag{3}
\end{equation*}
$$

The last three problems look interesting and potentially challenging. If more than one group wants to give these a try, that's fine.

